Fatty acid binding protein deletion suppresses inflammatory pain through endocannabinoid/N-acylethanolamine-dependent mechanisms
نویسندگان
چکیده
BACKGROUND Fatty acid binding proteins (FABPs) serve as intracellular carriers that deliver endocannabinoids and N-acylethanolamines to their catabolic enzymes. Inhibition of FABPs reduces endocannabinoid transport and catabolism in cells and FABP inhibitors produce antinociceptive and anti-inflammatory effects in mice. Potential analgesic effects in mice lacking FABPs, however, have not been tested. FINDINGS Mice lacking FABP5 and FABP7, which exhibit highest affinities for endocannabinoids, possessed elevated levels of the endocannabinoid anandamide and the related N-acylethanolamines palmitoylethanolamide and oleoylethanolamide. There were no compensatory changes in the expression of other FABPs or in endocannabinoid-related proteins in the brains of FABP5/7 knockout mice. These mice exhibited reduced nociception in the carrageenan, formalin, and acetic acid tests of inflammatory and visceral pain. The antinociceptive effects in FABP5/7 knockout mice were reversed by pretreatment with cannabinoid receptor 1, peroxisome proliferator-activated receptor alpha, and transient receptor potential vanilloid 1 receptor antagonists in a modality specific manner. Lastly, the knockout mice did not possess motor impairments. CONCLUSIONS This study demonstrates that mice lacking FABPs possess elevated levels of N-acylethanolamines, consistent with the idea that FABPs regulate the endocannabinoid and N-acylethanolamine tone in vivo. The antinociceptive effects observed in the knockout mice support a role for FABPs in regulating nociception and suggest that these proteins should serve as targets for the development of future analgesics.
منابع مشابه
Inhibition of Fatty Acid Binding Proteins Elevates Brain Anandamide Levels and Produces Analgesia
The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recen...
متن کاملCharacterization of N-Acyl Phosphatidylethanolamine-Specific Phospholipase-D Isoforms in the Nematode Caenorhabditis elegans
N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans) where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-a...
متن کاملTherapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N-Acylethanolamine Acid Amidase Inhibitors.
Fatty acid ethanolamides (FAEs) and endocannabinoids (ECs) have been shown to alleviate pain and inflammation, regulate motility and appetite, and produce anticancer, anxiolytic, and neuroprotective efficacies via cannabinoid receptor type 1 (CB1) or type 2 (CB2) or via peroxisome proliferator-activated receptor α (PPAR-α) stimulation. FAEs and ECs are synthesized by a series of endogenous enzy...
متن کاملRegulation of inflammatory pain by inhibition of fatty acid amide hydrolase.
Although cannabinoids are efficacious in laboratory animal models of inflammatory pain, their established cannabimimetic actions diminish enthusiasm for their therapeutic development. Conversely, fatty acid amide hydrolase (FAAH), the chief catabolic enzyme regulating the endogenous cannabinoid N-arachidonoylethanolamine (anandamide), has emerged as an attractive target for treating pain and ot...
متن کاملAntinociceptive effects of the N-acylethanolamine acid amidase inhibitor ARN077 in rodent pain models.
Fatty acid ethanolamides (FAEs), which include palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), are endogenous agonists of peroxisome proliferator-activated receptor-α (PPAR-α) and important regulators of the inflammatory response. They are degraded in macrophages by the lysosomal cysteine amidase, N-acylethanolamine acid amidase (NAAA). Previous studies have shown that pharmacological...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015